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1
MACHINE-LEARNING BASED DATAPATH
EXTRACTION

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of copending U.S. patent
application Ser. No. 13/484,111 filed May 30, 2012.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to the design of
semiconductor chips and integrated circuits, and more par-
ticularly to a method of identitying different portions of an
integrated circuit design which may be handled differently
during optimized placement of the circuit components in a
layout.

2. Description of the Related Art

Integrated circuits are used for a wide variety of electronic
applications, from simple devices such as wristwatches, to the
most complex computer systems. A microelectronic inte-
grated circuit (IC) chip can generally be thought of as a
collection of logic cells with electrical interconnections
between the cells, formed on a semiconductor substrate (e.g.,
silicon). An IC may include a very large number of cells and
require complicated connections between the cells. A cellis a
group of one or more circuit elements such as transistors,
capacitors, resistors, inductors, and other basic circuit ele-
ments combined to perform a logic function. Cell types
include, for example, core cells, scan cells, input/output (/O)
cells, and memory (storage) cells. Each of the cells of an IC
may have one or more pins, each of which in turn may be
connected to one or more other pins of the IC by wires. The
wires connecting the pins of the IC are also formed on the
surface of the chip. For more complex designs, there are
typically at least four distinct layers of conducting media
available for routing, such as a polysilicon layer and three
metal layers (metal-1, metal-2, and metal-3). The polysilicon
layer, metal-1, metal-2, and metal-3 are all used for vertical
and/or horizontal routing.

An IC chip is fabricated by first conceiving the logical
circuit description, and then converting that logical descrip-
tion into a physical description, or geometric layout. This
process is usually carried out using a “netlist,” which is a
record of all of the nets, or interconnections, between the cell
pins, including information about the various components
such as transistors, resistors and capacitors. A layout typically
consists of a set of planar geometric shapes in several layers.
The layout is then checked to ensure that it meets all of the
design requirements, particularly timing requirements. The
result is a set of design files known as an intermediate form
that describes the layout. The design files are then run through
a dataprep process that is used to produce patterns called
masks by an optical or electron beam pattern generator. Dur-
ing fabrication, these masks are used to etch or deposit fea-
tures in a silicon wafer in a sequence of photolithographic
steps using a complex lens system that shrinks the mask
image. The process of converting the specifications of an
electrical circuit into such a layout is called the physical
design.

Cell placement in semiconductor fabrication involves a
determination of where particular cells should optimally (or
near-optimally) be located on the surface of a integrated cir-
cuit device. Due to the large number of components and the
details required by the fabrication process for very large scale
integrated (VLSI) devices, physical design is not practical
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without the aid of computers. As a result, most phases of
physical design extensively use computer-aided design
(CAD) tools, and many phases have already been partially or
fully automated. Automation of the physical design process
has increased the level of integration, reduced turn around
time and enhanced chip performance. Several different pro-
gramming languages have been created for electronic design
automation (EDA), including Verilog, VHDL and TDML. A
typical EDA system receives one or more high level behav-
ioral descriptions of an IC device, and translates this high
level design language description into netlists of various lev-
els of abstraction. Given a netlist N=(V, E) with nodes (ver-
tices) V and nets (edges) E, a global placement tool obtains
locations (x,, y,) for all the movable nodes, such that the area
of nodes within any rectangular region does not exceed the
area of cell sites in that region. Though some work has looked
at general Steiner wirelength optimization, placers typically
minimize the half-perimeter wirelength (HPWL) of the
design. Modern placers often approximate HPWL by a dif-
ferentiable function using a quadratic objective.

Physical synthesis is prominent in the automated design of
integrated circuits such as high performance processors and
application specific integrated circuits (ASICs). Physical
synthesis is the process of concurrently optimizing place-
ment, timing, power consumption, crosstalk effects and the
like in an integrated circuit design. This comprehensive
approach helps to eliminate iterations between circuit analy-
sis and place-and-route. Physical synthesis has the ability to
repower gates (changing their sizes), insert repeaters (buffers
orinverters), clone gates or other combinational logic, etc., so
the area of logic in the design remains fluid. However, physi-
cal synthesis can take days to complete, and the computa-
tional requirements are increasing as designs are ever larger
and more gates need to be placed. There are also more
chances for bad placements due to limited area resources.

As technology scales beyond the deep-submicron regime
and operating frequencies increase, a new style is emerging in
the design of integrated circuits referred to as hybrid designs,
which contain a mixture of random logic and datapath (stan-
dard cell) components. FIG. 1A illustrates an example of a
random logic layout 1 having three rows containing various
cells. A given logic function or cone may have cells randomly
distributed in different rows to satisfy the placement con-
straints, with no particular boundaries for any set of cells.
FIG. 1B depicts a contrasting example of datapath logic lay-
out 2 with five subcircuits or macros each having predefined
geometries. Datapath logic was traditionally placed manu-
ally, i.e., a custom design, but there has been a significant
effort in recent years to include the placement of datapath
logic in the automation process, particularly for hybrid
designs which also contain random logic. However, place-
ment formulation for datapath logic is generally different
than that for random logic. Random logic placers ignore this
aspect of hybrid designs, which can lead to major wirelength
and congestion issues with state-of-the-art devices.

Methods have accordingly been devised for automatically
extracting datapaths from a netlist. Datapath extraction tech-
niques generally focus on functional or structural levels in the
design. Functional regularity extraction identifies logically
equivalent subcircuits within a netlist that are then handled
separately during placement. In one example a large set of
templates are generated and used to search for datapath logic
before placement. Another functional regularity example
uses a hash-based approach. Methods of structural datapath
extraction rely on a regularity metric to represent the datap-
ath. For example, datapath extraction can consist of a decom-
position of the netlist into a set of stages and a set of slices
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with one cell occurring in exactly one stage set and one slice
set. This extraction algorithm expands in search-waves
through the network using the regularity metric to determine
the expansion direction. More recently, a method for extract-
ing structure has been developed with the assumption that the
placement distance between a pair of cells is related to the
graph distance between them. Nets are weighted in a shortest
path computation by assuming the distance between two cells
is related to the degree of the net connecting them. Then, by
extracting “corner” cells and fixing them in place, the maxi-
mum distance of the other cells can be calculated.

SUMMARY OF THE INVENTION

The present invention is directed to a method of extracting
datapath logic from an integrated circuit design, by receiving
a circuit description for the integrated circuit design which
includes a plurality of cells interconnected to form a plurality
of nets, generating cell clusters from the circuit description,
evaluating the cell clusters to identify cluster features, and
selectively classifying the cell clusters as either datapath logic
or non-datapath logic using one or more machine-learning
models based on the cluster features. Two machine-learning
models can be used, each providing an indication of whether
a given one of the cell clusters is datapath logic, and the given
cell cluster can be classified as datapath only if both of the
machine-learning models indicate that the given cell cluster is
datapath logic. In the illustrative implementation a first one of
the machine-learning models is a support vector machine, and
a second one of the machine-learning models is a neural
network. The cluster features may include automorphism
generators for the cell clusters, or physical information based
on the cell locations from a previous placement. The physical
information may include a ratio of a total cell area for a given
cluster to a half-perimeter of a bounding box for the given
cluster.

The above as well as additional objectives, features, and
advantages of the present invention will become apparent in
the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features, and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

FIG. 1A is an example of a conventional random logic
layout;

FIG. 1B is an example of a conventional datapath logic
layout;

FIG. 2 is a block diagram of a computer system pro-
grammed to carry out integrated circuit design in accordance
with one implementation of the present invention;

FIG. 3 is apictorial representation of a seed growth method
for identitying candidate clusters in a netlist;

FIG. 4A is an example of a cell cluster which may be
evaluated for automorphisms in accordance with one imple-
mentation of the present invention;

FIG. 4B is a first automorphism of the cell cluster of FIG.
4A,

FIG. 4C is a second automorphism of the cell cluster of
FIG. 4A;

FIG. 4D is a third automorphism of the cell cluster of FIG.
4A,

FIG. 5 is an example of a cell cluster which is determined
to have no automorphisms in accordance with one implemen-
tation of the present invention;
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FIG. 6 is alayout for a cell cluster depicting how placement
hints may be derived including a ratio of total cell area to a
sum of cluster width and height in accordance with one imple-
mentation of the present invention;

FIG. 7 is a chart illustrating the logical flow for a training
process used in accordance with one implementation of the
present invention to generate machine learning models for
classifying a cluster as datapath or non-datapath (random);
and

FIG. 8 is a chart illustrating the logical flow for a datapath
extraction process in accordance with one implementation of
the present invention.

The use of the same reference symbols in different draw-
ings indicates similar or identical items.

DESCRIPTION OF THE PREFERRED
EMBODIMENT(S)

Previous datapath extraction algorithms which use only
functional or structural information are not effective for mod-
ern large-scale, hybrid (datapath/random logic) circuits hav-
ing many pre-placed blocks, for many reasons. Traditional
synthesis optimization objectives (both the synthesis and
physical design stages) are often at odds with what a custom
circuit designer would implement. One simple example is
how area optimization during synthesis often disrupts the
regular structure of a datapath. Design tools are not created to
extract logical hierarchy naturally. They generally flatten the
design which in the case of random logic is beneficial, but this
approach again disrupts the ability to identify quality place-
ment and timing solutions. Each stage in the synthesis flow is
generally independent of other optimization stages requiring
significant amounts of iterations. For example, synthesis opti-
mization (optimizing the Boolean logic before technology
mapping) is generally not timing aware. Placement is gener-
ally not aware of routability. Current attempts to mitigate
these issues focus simply on iterative techniques to gradually
improve wirelength without hurting placement, and none of
them actually solve for how or why datapath logic is different.

It would, therefore, be desirable to devise an improved
method of datapath extraction which could automatically
classify areas of a circuit design as either datapath or random
logic so as to allow placement tools to separately handle those
two types of circuitry. It would be further advantageous if the
method could efficiently manage large design sizes without
requiring excessive run time. The present invention achieves
these objectives using a high-dimensional data learning,
extraction, and evaluation algorithm. This inventive approach
can consider not only logic structures, but also placement
hints from initial global placement results. The novel extrac-
tion method has demonstrated significantly better results than
previous state-of-the-art methods on both hybrid industrial
designs which contain random logics and data paths, and
placement benchmarks where structured datapath logics were
not even intended. Both graph-based and physical features
can be analyzed and extracted from the netlist, mapping a set
of parameters most critical and sensitive to datapath logic.
Effective features can be used to create differentiation
between random and datapath logic, allowing the patterns
extracted from a training set to classify datapath structures in
new circuits.

With reference now to the figures, and in particular with
reference to FIG. 2, there is depicted one embodiment 10 of a
computer system in which the present invention may be
implemented to carry out the design of logic structures in an
integrated circuit. Computer system 10 is a symmetric mul-
tiprocessor (SMP) system having a plurality of processors
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12a, 12b connected to a system bus 14. System bus 14 is
further connected to a combined memory controller/host
bridge (MC/HB) 16 which provides an interface to system
memory 18. System memory 18 may be a local memory
device or alternatively may include a plurality of distributed
memory devices, preferably dynamic random-access
memory (DRAM). There may be additional structures in the
memory hierarchy which are not depicted, such as on-board
(L1) and second-level (L.2) or third-level (L3) caches.

MC/HB 16 also has an interface to peripheral component
interconnect (PCI) Express links 20a, 205, 20c. Each PCI
Express (PCle) link 20a, 205 is connected to a respective
PCle adaptor 22a, 22b, and each PCle adaptor 22a, 225 is
connected to a respective input/output (/O) device 24a, 245.
MC/HB 16 may additionally have an interface to an /O bus
26 which is connected to a switch (I/O fabric) 28. Switch 28
provides a fan-out for the I/O bus to a plurality of PCI links
20d, 20e, 20f. These PCI links are connected to more PCle
adaptors 22¢, 22d, 22e which in turn support more 1/O devices
24c¢, 24d, 24e. The I/O devices may include, without limita-
tion, a keyboard, a graphical pointing device (mouse), a
microphone, a display device, speakers, a permanent storage
device (hard disk drive) or an array of such storage devices, an
optical disk drive, and a network card. Each PCle adaptor
provides an interface between the PCI link and the respective
1/0 device. MC/HB 16 provides a low latency path through
which processors 12a, 125 may access PCI devices mapped
anywhere within bus memory or /O address spaces. MC/HB
16 further provides a high bandwidth path to allow the PCI
devices to access memory 18. Switch 28 may provide peer-
to-peer communications between different endpoints and this
data traffic does not need to be forwarded to MC/HB 16 if it
does notinvolve cache-coherent memory transfers. Switch 28
is shown as a separate logical component but it could be
integrated into MC/HB 16.

In this embodiment, PCI link 20¢ connects MC/HB 16 to a
service processor interface 30 to allow communications
between [/O device 24a and a service processor 32. Service
processor 32 is connected to processors 12a, 126 via a ITAG
interface 34, and uses an attention line 36 which interrupts the
operation of processors 12a, 12b. Service processor 32 may
have its own local memory 38, and is connected to read-only
memory (ROM) 40 which stores various program instruc-
tions for system startup. Service processor 32 may also have
access to a hardware operator panel 42 to provide system
status and diagnostic information.

In alternative embodiments computer system 10 may
include modifications of these hardware components or their
interconnections, or additional components, so the depicted
example should not be construed as implying any architec-
tural limitations with respect to the present invention. The
invention may further be implemented in an equivalent cloud
computing network.

When computer system 10 is initially powered up, service
processor 32 uses JTAG interface 34 to interrogate the system
(host) processors 12a, 126 and MC/HB 16. After completing
the interrogation, service processor 32 acquires an inventory
and topology for computer system 10. Service processor 32
then executes various tests such as built-in-self-tests (BISTs),
basic assurance tests (BATs), and memory tests on the com-
ponents of computer system 10. Any error information for
failures detected during the testing is reported by service
processor 32 to operator panel 42. If a valid configuration of
system resources is still possible after taking out any compo-
nents found to be faulty during the testing then computer
system 10 is allowed to proceed. Executable code is loaded
into memory 18 and service processor 32 releases host pro-
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6

cessors 12a, 125 for execution of the program code, e.g., an
operating system (OS) which is used to launch applications
and in particular the circuit design application of the present
invention, results of which may be stored in a hard disk drive
of'the system (an /O device 24). While host processors 12a,
1256 are executing program code, service processor 32 may
enter a mode of monitoring and reporting any operating
parameters or errors, such as the cooling fan speed and opera-
tion, thermal sensors, power supply regulators, and recover-
able and non-recoverable errors reported by any of processors
124, 125, memory 18, and MC/HB 16. Service processor 32
may take further action based on the type of errors or defined
thresholds.

As will be appreciated by one skilled in the art, the present
invention may be embodied as a system, method or computer
program product. Accordingly, the present invention may
take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, the
present invention may take the form of a computer program
product embodied in any tangible medium of expression hav-
ing computer usable program code embodied in the medium.

Any combination of one or more computer usable or com-
puter readable media may be utilized. The computer-usable
or computer-readable medium may be, for example but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, device, or
propagation medium. More specific examples (a non-exhaus-
tive list) of the computer-readable medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, a transmission
media such as those supporting the Internet or an intranet, or
amagnetic storage device. The computer-usable or computer-
readable medium could even be paper or another suitable
medium upon which the program is printed, as the program
can be electronically captured, via, for instance, optical scan-
ning of the paper or other medium, then compiled, inter-
preted, or otherwise processed in a suitable manner, if neces-
sary, and then stored in a computer memory. In the context of
this invention, a computer-usable or computer-readable
medium may be any medium that can contain, store, commu-
nicate, propagate, or transport the program for use by or in
connection with the instruction execution system, apparatus,
or device. The computer-usable medium may include a
propagated data signal with the computer-usable program
code embodied therewith, either in baseband or as part of a
carrier wave. The computer usable program code may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc.

Computer program code for carrying out operations of the
present invention may be written in any combination of one or
more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the
like and conventional procedural programming languages,
written for a variety of platforms such as an AIX environment
or operating systems such as Windows 7 or Linux. The pro-
gram code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software pack-
age, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
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user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider).

The present invention is described below with reference to
flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments of the invention. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart illus-
trations and/or block diagrams, can be implemented by com-
puter program instructions. These computer program instruc-
tions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create
means for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer-readable medium that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, such that the instructions stored in the
computer-readable medium produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks. Such storage media excludes transitory media.

The computer program instructions may further be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). In some
alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. Each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

Computer system 10 carries out program instructions for a
physical synthesis process that uses novel datapath extraction
techniques to optimize cell placement. Accordingly, a pro-
gram embodying the invention may include conventional
aspects of various synthesis or placement tools, and these
details will become apparent to those skilled in the art upon
reference to this disclosure. In the illustrative implementa-
tion, computer system 10 carries out datapath extraction by
generating candidate clusters of the original netlist in which
to search for datapath structures, and evaluating each cluster
to identify specific characteristics used to distinguish datap-
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ath logic from random logic. Machine learning techniques
can then be used to classify the clusters based on training
models.

The clustering stage prepares the netlist to analyze and
extract datapath structures from. The goal is to find clusters
exhibiting identifiable structural and physical features. There
are numerous conventional techniques for grouping cells of
an integrated circuit design into clusters. The preferred imple-
mentation of the present invention uses an extension of the
connectivity-based seed growth method proposed by Liu and
Marek-Sadowska in the paper “Pre-Layout Physical Connec-
tivity Predictions With Applications In Clustering, Placement
And Logic Synthesis,” Proc. ICCAD, pages 31-37 (2005).
According to that technique, a ratio of external to internal
cluster forces is maximized while maintaining a maximum
logic depth threshold. The external force is defined as the
summation of the edge weights of nets with at least one vertex
(node) outside and one inside a given cluster C, and the
internal force is defined as the summation of all internal
cluster connection weights, as depicted FIG. 3. A candidate
cluster 48 has seven internal nodes with connections to five
external nodes. The internal connection weights are IW, -
IW,, and the external connection weights are EW -EW,.
Specific weight values can be determined according to the
particular net model used. The internal and external forces
affect the physical size of a cluster in opposite directions. The
internal force tries to keep the nodes together in the final
layout, whereas the external force tends to pull the nodes
apart.

This clustering method uses a bottom-up algorithm which
starts from a seed node. Suitable seed nodes are those with
large net degrees, i.e., the nodes are sorted by node degree,
and a seed node is selected which is currently unclustered and
has the largest node degree. The connectivity between a
neighboring node u of a cluster C, is equal to the sum of edge
weights for all connections between u and nodes within the
cluster. In each subsequent pass, the neighboring node with
the largest connectivity is added to the cluster while keeping
the internal force of the cluster as large as possible. Neigh-
boring nodes are added in each pass until the size of the
cluster exceeds a cluster size constraint.

Once clusters in the netlist have been identified, computer
system 10 extracts and evaluates distinguishing features of
the clusters. The present invention can take advantage of the
observation that most datapath logic contains a high degree of
graph automorphism. An automorphism of a graph (a form of
symmetry) preserves the edge-vertex connectivity of a graph
G=(V; E) while mapping onto itself. That is, an automor-
phism is a graph isomorphism from G to itself, i.e., a permu-
tation of the vertex set V such that the pair of vertices (u; v)
form an edge if and only if the pair ((u); (v)) also form an
edge. The set of automorphisms of a given graph forms the
automorphism group for that graph. Generators for the auto-
morphism group are defined as a set of elements which may
be combined to generate every non-identical permutation in
the automorphism group. For example, FIG. 4A depicts a
graph G having six labeled nodes and seven edges. This graph
has a total of four automorphisms and two generators. The
first automorphism, G(1; 2; 3; 4; 5; 6), corresponds to itself,
with three additional automorphisms: G(2; 1; 4; 3; 6; 5) as
seen in FIG. 4B (G flipped left-right); G(5; 6; 3; 4; 1; 2) as
seen in FIG. 4C (G flipped upside-down); and G(6; 5; 4; 3; 2;
1) as seen in FIG. 4D (G flipped left-right and upside-down).
The nontrivial generator set S of G is (1; 5)(2; 6) and (1; 2)(3;
4)(5; 6). As this example shows, the symmetry of the graph
along with the generator group provides possible bit-stack
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candidates including: (1; 2), (5; 6) or (1; 3; 5), (2; 4; 6), an
indication that the graph should be judged as datapath logic.

In contrast, FIG. 5 displays a random logic netlist 52 also
having six nodes and seven edges. However, unlike the clear
symmetry present in FIG. 4A, the graph of FIG. 5 contains no
nontrivial automorphisms. This fundamental observation
holds true for random logic netlists in general. Thus, the
automorphism generators of structured logic appear very dif-
ferently than the automorphism generators of random logic
enabling sufficient differentiation as a datapath feature.

While graph automorphism features are particularly useful
in classifying logic as random or datapath, the present inven-
tion may alternatively or additionally take advantage of
physical information gleaned from a previous placement
optimization, e.g., global placement. Global placement has
merit in wirelength optimization, so the present invention can
use placement hints for improved classification. In one imple-
mentation, the physical information so used relates to the area
of the cells within a cluster and the size of the cluster’s
bounding box, as shown in FIG. 6. In particular, this feature
can be quantified as the ratio rC, of the total cell area within
cluster C, to the sum of the bounding box height and width.
This physical information helps to characterize the amount of
spreading and the initial cell locations for each cluster. Dense
clusters indicate tightly packed logic and possibly the need
for improved placement whereas sparse logic is generally less
likely to improve from being passed to a datapath placer. The
previous placement may be from some other placement tool,
and could be an initial placement or even an incomplete
placement.

Computer system 10 uses the cluster features to classify
and evaluate each cluster with machine-learning based mod-
els. In the preferred implementation computer system 10
combines two data learning algorithms, a support vector
machine (SVM) and a neural network (NN), to build compact
and run-time efficient models, although other machine-learn-
ing models may be used. FIG. 7 illustrates a training process
60 for creating the models. The process begins with a learning
set of design patterns (cell cluster netlists) which are known
or designated to be either datapath or random in nature, with
cells located in a manner similar to a global or other optimized
placement (62). The learning set is preferably relatively small
(for example, as small as a few thousand patterns), and since
the patterns are built a priori at a one time cost, the CPU
run-time penalty is negligible. For each learning pattern, any
automorphism generators and physical information associ-
ated with the placement are computed (64). Corresponding
support vectors are created and the SVM calculates a hyper-
plane boundary with maximum separation margin between
datapath and non-datapath logic associated with the support
vectors (66). Only the critical information on the separation
boundaries is preserved in the SVM model, i.e., the corre-
sponding support vectors. All of the support vectors are
involved in the SVM decision calculation (score). The NN
operates by configuring complex networks of neurons to
achieve a high dimensional decision diagram-like data struc-
ture associated with the same training samples (automor-
phism generators and physical information) and decision
hints. In the illustrative embodiment the NN generates a score
which is normalized between -1 (indicating random logic)
and +1 (indicating datapath logic). The decision can be biased
to maximize the number of correctly selected datapath cir-
cuits by moving the required score closer to the datapath logic
maximum; for example, logic may be indicated as datapath
only if its normalized score is above 0.8. A resilient backward
propagation method based on iterative sub-gradient updates
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can be employed. For better quality, both a soft-error tolerant
SVM and a special working set selection method can be used.

After the boundaries are calculated the models can be
calibrated, preferably by manual adjustment of the separation
threshold and/or NN score (68). The designer can move the
boundaries to account for noise in the test data or otherwise
improve the evaluation accuracies. The model is then applied
to a larger set of known design patterns (exclusive from the
learning set) for validation, to assure a balance of learning
accuracies between the training data and the unknown testing
data (70). The validation set is preferably large compared to
the learning set (for example 30,000 patterns). In the illustra-
tive implementation two types of accuracies are defined to
quantify the learning performance, datapath evaluation accu-
racy and non-datapath evaluation accuracy. Datapath evalu-
ation accuracy is the rate of correctly detected datapath (or
datapath-like) patterns over the total number of actual datap-
ath structures. Non-datapath evaluation accuracy is the rate of
correctly detected non-datapath (e.g., random logic) patterns
over the total number of non-datapath structures processed.
The optimization objective for both SVM and NN is to maxi-
mize the evaluation accuracies of datapath and non-datapath
patterns, or equivalently, to minimize the mean square errors
for both classes of pattern evaluation.

The evaluation accuracies can be compared to minimum
rates in order to determine whether the model is valid, i.e.,
whether there is sufficient confidence (72). The minimum
rates may vary depending on the set of learning patterns used.
If the model is considered valid, the training is complete.
Otherwise, the model may be recalibrated (returning to box
68), or the designer may decide to apply additional learning
sets (returning to box 62). Once validated, the model is ready
for use in datapath extraction on new (unknown) circuit
designs.

The present invention may be further understood with ref-
erence to the chart of FIG. 8 which shows the logical flow for
one implementation of a datapath extraction process 80. The
process begins by receiving the netlist for a new circuit design
or portion thereof (82). The design has preferably undergone
an optimized placement such as global placement, and the
placement information is included in the netlist so that physi-
cal information can be considered in the analysis, but those
skilled in the art will appreciate that datapath extraction
according to the present invention may still proceed without
such physical information. Cells or nodes of the design are
grouped into clusters according to any convenient clustering
algorithm, such as the connectivity-based seed growth
method described above (84). Cluster features are identified,
including automorphisms and their generators, and physical
information from global placement hints, such as the ratio of
total cell area to bounding box half-perimeter (86). Each of
the clusters is then individually classified as either datapath
logic or random logic by applying the data learning models to
evaluate the cluster features (88). As the new patterns go
through the learning models, their evaluation scores could
span within certain ranges for datapath and non-datapath
patterns, respectively, for both NN and SVM, so the designer
may choose different bases for deciding whether a given
cluster is datapath. In the preferred implementation, a pattern
is determined to datapath logic if and only if both of the NN
and SVM evaluation scores indicate datapath logic (i.e., are
above certain thresholds). This redundant approach helps to
systematically improve the datapath evaluation accuracy
without noticeable penalty in non-datapath accuracy. Usually
NN and SVM have similar performance for most binary clas-
sifications, e.g., differentiating datapath-like and non-datap-
ath patterns. In principle, SVM guarantees the global opti-



US 9,147,032 B2

11

mum but can be sensitive to data noise. NN usually has good
noise robustness, however it can take more time in training
and calibration to reach an optimal or close-to-optimal result.

Once all of the clusters have been evaluated, the netlist is
updated with the classification information (90), and the pro-
cess ends. The classification information can be used in later
design stages by a placement tool which employs different
methodologies for datapath versus random logic. For
example, datapath logic may be placed according to the tiered
assignment method described in U.S. patent application Ser.
No. 13/451,382 filed Apr. 19, 2012, for improved bit-stack
alignment. Experimental results indicate significant wire-
length improvements during automated placement using the
novel extraction methods described herein. Datapath wire-
length improvements were even greater.

Although the invention has been described with reference
to specific embodiments, this description is not meant to be
construed in a limiting sense. Various modifications of the
disclosed embodiments, as well as alternative embodiments
of the invention, will become apparent to persons skilled in
the art upon reference to the description of the invention. It is
therefore contemplated that such modifications can be made
without departing from the spirit or scope of the present
invention as defined in the appended claims.

What is claimed is:

1. A computer-implemented method of extracting datapath
logic from an integrated circuit design, comprising:

receiving a circuit description for the integrated circuit

design which includes a plurality of cells interconnected
to form a plurality of nets, by executing first instructions
in a computer system;
generating cell clusters from the circuit description, by
executing second instructions in the computer system;

evaluating the cell clusters to identify one or more cluster
features in the cell clusters, by executing third instruc-
tions in the computer system; and

selectively classifying the cell clusters as either datapath

logic or non-datapath logic using one or more machine-
learning models based on the one or more cluster fea-
tures, by executing fourth instructions in the computer
system.

2. The method of claim 1 wherein said classifying uses at
least two machine-learning models each providing an indica-
tion of whether a given one of the cell clusters is datapath
logic, and the given cell cluster is classified as datapath only
when both of the two machine-learning models indicate that
the given cell cluster is datapath logic.

3. The method of claim 1 wherein the cluster features
include automorphism generators for the cell clusters.

4. The method of claim 1 wherein the circuit description
further includes locations for the cells from a previous place-
ment, and the cluster features include physical information
based on the cell locations.

5. The method of claim 4 wherein the physical information
includes a ratio of a total cell area for a given cluster to a
half-perimeter of a bounding box for the given cluster.

6. A computer system comprising:

one or more processors which process program instruc-

tions;

amemory device connected to said one or more processors;

and
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program instructions residing in said memory device for
extracting datapath logic from an integrated circuit
design by receiving a circuit description for the inte-
grated circuit design which includes a plurality of cells
interconnected to form a plurality of nets, generating cell
clusters from the circuit description, evaluating the cell
clusters to identify one or more cluster features in the
cell clusters, and selectively classifying the cell clusters
as either datapath logic or non-datapath logic using one
or more machine-learning models based on the one or
more cluster features.

7. The computer system of claim 6 wherein said program
instructions classify the cell clusters using at least two
machine-learning models each providing an indication of
whether a given one of the cell clusters is datapath logic, and
the given cell cluster is classified as datapath only when both
of the two machine-learning models indicate that the given
cell cluster is datapath logic.

8. The computer system of claim 6 wherein the cluster
features include automorphism generators for the cell clus-
ters.

9. The computer system of claim 6 wherein the circuit
description further includes locations for the cells from a
previous placement, and the cluster features include physical
information based on the cell locations.

10. The computer system of claim 9 wherein the physical
information includes a ratio of a total cell area for a given
cluster to a half-perimeter of a bounding box for the given
cluster.

11. A computer program product comprising:

a computer-readable storage medium; and

program instructions residing in said storage medium for

extracting datapath logic from an integrated circuit
design by receiving a circuit description for the inte-
grated circuit design which includes a plurality of cells
interconnected to form a plurality of nets, generating cell
clusters from the circuit description, evaluating the cell
clusters to identify one or more cluster features in the
cell clusters, and selectively classifying the cell clusters
as either datapath logic or non-datapath logic using one
or more machine-learning models based on the one or
more cluster features.

12. The computer program product of claim 11 wherein
said program instructions classity the cell clusters using at
least two machine-learning models each providing an indica-
tion of whether a given one of the cell clusters is datapath
logic, and the given cell cluster is classified as datapath only
when both of the two machine-learning models indicate that
the given cell cluster is datapath logic.

13. The computer program product of claim 11 wherein the
cluster features include automorphism generators for the cell
clusters.

14. The computer program product of claim 11 wherein the
circuit description further includes locations for the cells
from a previous placement, and the cluster features include
physical information based on the cell locations.

15. The computer program product of claim 14 wherein the
physical information includes a ratio of a total cell area for a
given cluster to a half-perimeter of a bounding box for the
given cluster.



